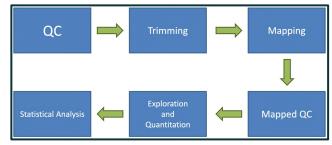

Introduction to RNA-seq and functional interpretation: Next steps in gene prioritisation

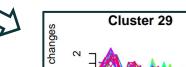
22nd Feb 2023

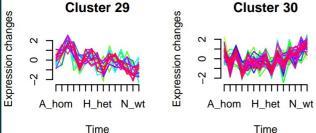
Me

- Ian Sealy
- Busch Lab, QMUL
- Previously at Sanger Institute
- RNA-seq / zebrafish
- Run "Bioinformatics & Functional Genomics in Zebrafish" course at EBI



Gene list of interest

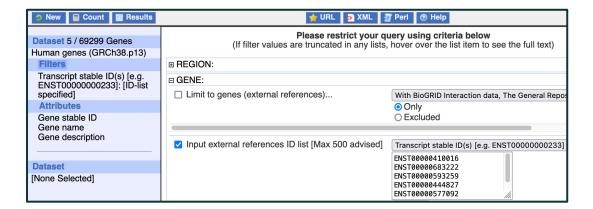

- Starting point for today: **gene list of interest**
- Most likely from RNA-seq differential expression analysis



- But could be a list from any other analysis:
 - Clustering genes with similar expression profiles
 - Microarray analysis 0
 - Quantitative proteomics
 - Differential methylation analysis
 - etc...

From: Simon Andrews (yesterday)

Unranked or ranked gene list?


- Gene list can be:
 - Unranked (e.g. genes with somatic mutations in cancer sample)
 - Ranked (e.g. sensitivity in a CRISPR screen)
- RNA-seq differential expression analysis produces ranked lists
- Ranked lists are ordered by a score or metric:
 - o e.g. adjusted p-value
 - o e.g. log₂ fold change
- Ranked lists can also have a threshold applied:
 - e.g. adjusted p-value < 0.05

ENSDARG00000043198 ENSDARG000000075229 ENSDARG000000036695 ENSDARG00000092115 ENSDARG00000013076 ENSDARG00000015890 ENSDARG000000060682 ENSDARG000000076241 ENSDARG00000093347 ENSDARG000000098114

ENSDARG00000075676 0.039
ENSDARG00000104197 0.041
ENSDARG00000004301 0.041
ENSDARG00000079766 0.042
ENSDARG00000030494 0.042
ENSDARG00000116804 0.043
ENSDARG00000100599 0.043
ENSDARG00000104325 0.043
ENSDARG00000111102 0.043
ENSDARG000000111102 0.044

"Gene" list of interest

- May not actually be a list of genes
- Could be transcripts or proteins or SNPs, etc...
- Most tools require a list of genes so need to convert
- BioMart is a useful tool for conversions (and other bioinformatics tasks): www.ensembl.org/biomart/martview

What next?

- Have a gene list, but what do you do next?
- How do you relate the gene list to existing knowledge?

Gene	pval	adjp	log2fc
ENSDARG00000041294	4.904002310063973e-37	1.0867269119101765e-32	1.5709251030700861
ENSDARG00000060498	1.1297090308658515e-25	1.2517176061993635e-21	1.5921762041345
ENSDARG00000031683	3.2009883731403506e-25	2.364463411626339e-21	-1.277820860357806
ENSDARG00000077982	5.3336179195843655e-18	2.9548243274497384e-14	0.9349522690823255
ENSDARG00000070480	1.2940060161760502e-17	5.735034663692255e-14	1.0699010828953783
ENSDARG00000007769	4.245003753873642e-17	1.5678213864306653e-13	1.6785196633873156
ENSDARG00000102435	6.025610180317608e-17	1.9075360227976884e-13	1.0539265022132713
ENSDARG00000101482	9.742460938723084e-17	2.6986616800262944e-13	0.9350743176658163
ENSDARG00000034503	2.261103100242347e-16	5.56733 <u>8</u> 300152267e-13	0.6082489350504545

What next?

- Have a gene list, but what do you do next?
- How do you relate the gene list to existing knowledge?

2.261103100242347e-16

Add annotation (e.g. BioMart)

ENSDARG00000034503

```
adjp
                                                                                                                              log2fc
                                             pval
                                            4.904002310063973e-37
                                                                                     1.0867269119101765e-32
                                                                                                                             1.5709251030700861
                                                                          Chr Start
                                                                                       End
                pval
                                                         loa2fc
                                                                                               Name
                                                                                                        Description
ENSDARG00000041294 4.904002310063973e-37
                                    1.0867269119101765e-32 1.5709251030700861
                                                                               62161184
                                                                                      62169060 noxo1a
                                                                                                        NADPH oxidase organizer 1a
                                                                                               tnfrsf9a tumor necrosis factor receptor superfamily, member 9a
                1.1297090308658515e-25 1.2517176061993635e-21
                                                                               46552311
                                                                                       46554440
                                                                                               fosab
                                                                                                        v-fos FBJ murine osteosarcoma viral oncogene homolog Ab
                                                                                               elf3
                                                                                                        E74-like factor 3 (ets domain transcription factor, epithelial-specific)
FNSDARG00000077982 5.3336179195843655e-18 2.9548243274497384e-14 0.9349522690823255
                                                                              661505
                                                                                       665371
                                                                                               agr2
                                                                                                        anterior gradient 2
                4.245003753873642e-17
                                    1.5678213864306653e-13 1.6785196633873156
                                                                                               sult5a1
                                                                                                        sulfotransferase family 5A, member 1
                                                                                                        pleckstrin homology domain containing, family F (with FYVE domain) member 1
                                                                                       45976956
                                                                                               plekhf1
                                                                                       14004206
                                                                                               hk2
                                                                                                        hexokinase 2
ENSDARG00000034503 2.261103100242347e-16
                                   5.567338300152267e-13
                                                                               48309600
                                                                                       48375342 per2
                                                                                                        period circadian clock 2
                                                                                      L.9075360227976884e-13
                                                                                                                               1.0539265022132713
                                                                                     2.6986616800262944e-13
           ENSDARG00000101482
                                            9.742460938723084e-17
                                                                                                                             0.9350743176658163
```

5.567338300152267e-13

0.6082489350504545

GENE

noxo1a

ID ZDB-GENE-030131-9700

Name NADPH oxidase organizer 1a

Symbol noxo1a Nomenclature History

Previous Names noxo1, cb18 (1), sb:cb18, SNX28b (1), wu:fd09d09, zgc:152911 (1)

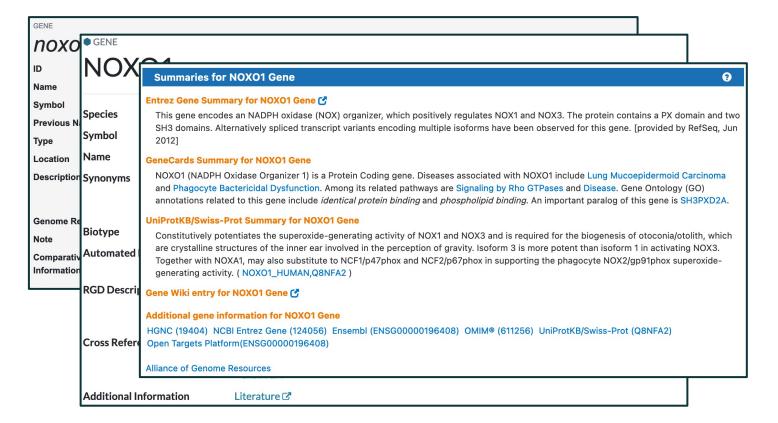
Type protein_coding_gene ☑

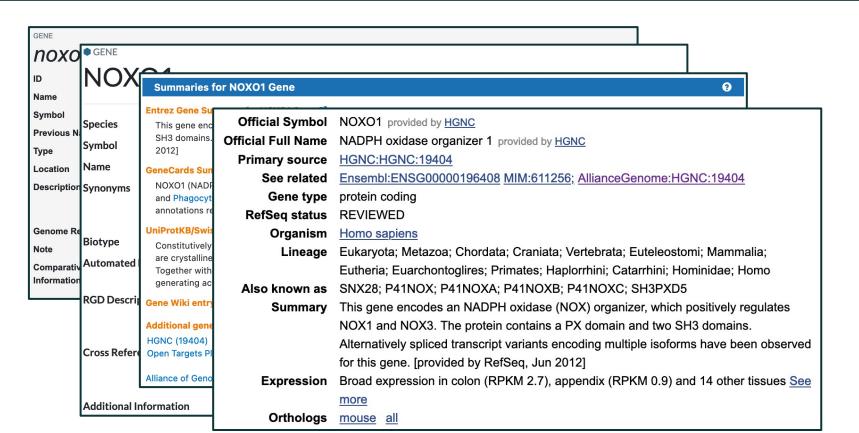
Location Chr: 3 Mapping Details/Browsers

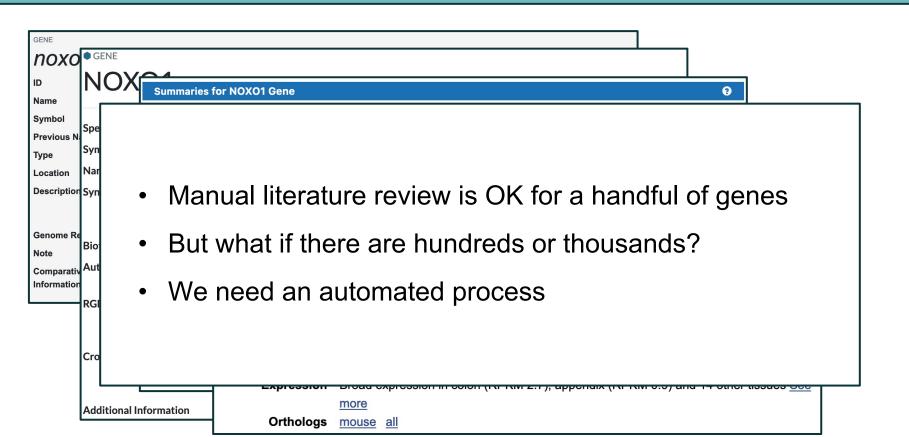
Description 1 Predicted to have phosphatidylinositol-3-phosphate binding activity and superoxide-generating NADPH oxidase activator activity.

Predicted to be involved in superoxide metabolic process. Predicted to localize to NADPH oxidase complex and cytoplasm. Is

expressed in EVL; periderm; and pharynx. Orthologous to human NOXO1 (NADPH oxidase organizer 1).


Genome Resources Alliance & (1), Gene:572245 & (1), Ensembl(GRCz11):ENSDARG00000041294 & (3)


Note None


Comparative Information

<i>NOXO</i> ID Name	• GENE NOXO1	
Symbol Previous N	Species	Homo sapiens
Type	Symbol	NOXO1
Location	Name	NADPH oxidase organizer 1
Description	Synonyms	MGC20258 NADPH oxidase regulatory protein ▼ Show All 12
Genome Re Note	Biotype	protein coding gene
Comparativ Information	Automated Description ?	Enables enzyme binding activity. Involved in extracellular matrix disassembly. Part of NADPH oxidase complex.
	RGD Description	This gene encodes an NADPH oxidase (NOX) organizer, which positively regulates NOX1 and NOX3. The protein contains a PX domain and two SH3 domains. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jun 2012]
	Cross References	ENSEMBL:ENSG00000196408 ♂ NCBI_Gene:124056 ♂ ▼ Show All 4
	Additional Information	Literature ♂

Functional enrichment analysis

- Functional enrichment analysis (or over-representation) systematically relates your data to existing knowledge
- Can help you to:
 - Gain biological insight
 - Generate new hypotheses
 - Validate your experiment

Functional gene sets

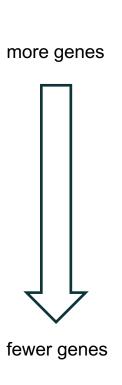
- Existing knowledge is organised into functional gene sets in a standardised way, using data from previous experiments
- A functional gene set is a group of genes with a common biological relationship (e.g. annotated to same biological process or involved in same pathway)
- e.g. circadian rhythm:

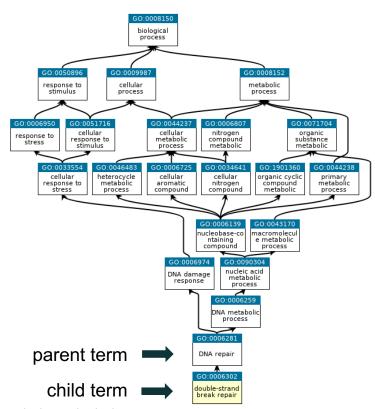
Gene Product	Symbol	Qualifier	GO Term	Evidence	Reference	Assigned By	Name
UniProtKB:A0A024QZG3	ATF5	involved_in	GO:0007623 P 🖨 🗗 circadian rhythm	ECO:0000265	GO_REF:0000107	Ensembl	BZIP domain-containing protein
UniProtKB:A0A024QZQ1	SIRT1	involved_in	GO:0007623 P	ECO:0000265 🛧 IEA	GO_REF:0000107	Ensembl	Deacetylase sirtuin-type domain-containing protein
UniProtKB:A0A024R230	NTRK2	involved_in	GO:0007623 P 🖨 🕂 circadian rhythm	ECO:0000265 🕂 IEA	GO_REF:0000107	Ensembl	Tyrosine-protein kinase receptor
UniProtKB:A0A024R241	NFIL3	involved_in	GO:0007623 P 🖨 🗗 circadian rhythm	ECO:0000256	GO_REF:0000002	InterPro	Nuclear factor interleukin-3-regulated protein

Functional annotation

- Functional annotation is created and maintained by many dedicated databases and projects, e.g.
 - Gene Ontology (GO)
 - Reactome
 - KEGG
 - TRANSFAC

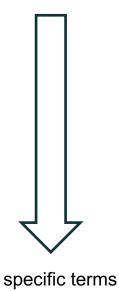
Gene Ontology


```
Current release 2023-01-01: 43,248 GO terms | 7,503,460 annotations 1,475,947 gene products | 5,267 species (see statistics)
```


- GO is largest source of gene functional annotation
- Structured, controlled vocabulary of terms (and therefore gene sets)
- Manually annotated by a large consortium
- Data come from experimental and computational analyses

GO ontologies

- Actually three separate ontologies:
 - Molecular Function molecular level activities performed by gene products, e.g. transporter activity (broad) or Toll-like receptor binding (specific)
 - **Cellular Component** the cellular location where a function is performed, e.g. *ribosome*
 - Biological Process larger processes accomplished by multiple molecular activities, e.g. DNA repair (broad) or pyrimidine nucleobase biosynthetic process (specific)
- Generally, in functional enrichment analysis, "biological process" is most useful


GO hierarchy

root term

broad terms

QuickGO - https://www.ebi.ac.uk/QuickGO

BRCA2 example

Description BRCA2 DNA repair associated [Source:HGNC

Symbol;Acc:HGNC:1101 2

Gene Synonyms BRCC2, FACD, FAD, FAD1, FANCD, FANCD1, XRCC11

Location Chromosome 13: 32,315,086-32,400,268 forward strand.

GRCh38:CM000675.2

About this gene This gene has 15 transcripts (splice variants), 173

orthologues and is associated with 120 phenotypes.

Transcripts

Show transcript table

GO: Molecular function @

Show/hide columns	(3 hidden)	Filter	
Accession	Term	Evidence -	Annotation source
GO:0002020 &	protease binding	IPI	UniProt
GO:0003677 ₺	DNA binding	IEA	UniProt
GO:0003697 ₺	single-stranded DNA binding	IDA	UniProt
GO:0005515 &	protein binding	IPI	IntAct
GO:0008022 &	protein C-terminus binding	IDA	MGI
GO:0010484 &	H3 histone acetyltransferase activity	IDA	UniProt
GO:0010485 &	H4 histone acetyltransferase activity	IDA	UniProt
GO:0042802 &	identical protein binding	IPI	IntAct
GO:0043015 &	gamma-tubulin binding	IPI	UniProt

BRCA2 example

Gene: BRCA2 ENSG00000139618

Description BRCA2 DNA repair associated [Source:HGNC

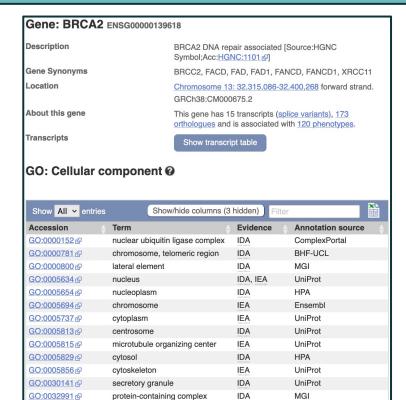
Symbol;Acc:HGNC:1101 2

Gene Synonyms BRCC2, FACD, FAD, FAD1, FANCD, FANCD1, XRCC11

Location Chromosome 13: 32.315.086-32.400.268 forward strand.

GRCh38:CM000675.2

About this gene This gene has 15 transcripts (splice variants), 173


orthologues and is associated with 120 phenotypes.

Transcripts

Show transcript table

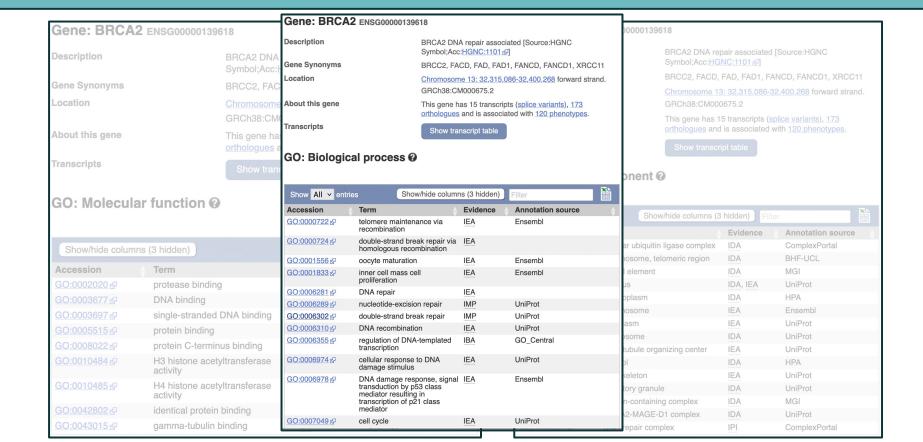
GO: Molecular function @

Show/hide colum	ns (3 hidden)	Filte	r
Accession	← Term	Evidence	Annotation source
GO:0002020 &	protease binding	IPI	UniProt
GO:0003677 &	DNA binding	IEA	UniProt
GO:0003697 &	single-stranded DNA binding	IDA	UniProt
GO:0005515 &	protein binding	IPI	IntAct
GO:0008022 &	protein C-terminus binding	IDA	MGI
GO:0010484 &	H3 histone acetyltransferase activity	IDA	UniProt
GO:0010485 @	H4 histone acetyltransferase activity	IDA	UniProt
GO:0042802 &	identical protein binding	IPI	IntAct
GO:0043015 ₺	gamma-tubulin binding	IPI	UniProt

IDA

UniProt

ComplexPortal


BRCA2-MAGE-D1 complex

DNA repair complex

GO:0033593 科

GO:1990391 叔

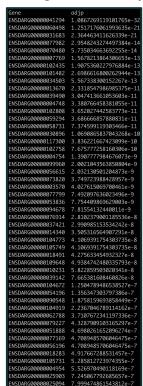

BRCA2 example

Functional enrichment analysis

- How do we use all the existing annotation to interpret our gene list?
- Want to identify biological functions that are enriched in our gene list

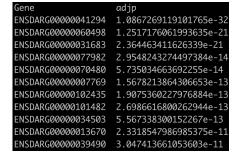
20,000 genes assayed

500 significantly DE genes


Gene	adjp
ENSDARG00000041294	1.0867269119101765e-32
ENSDARG00000060498	1.2517176061993635e-21
ENSDARG00000031683	2.364463411626339e-21
ENSDARG00000077982	2.9548243274497384e-14
ENSDARG00000070480	5.735034663692255e-14
ENSDARG00000007769	1.5678213864306653e-13
ENSDARG00000102435	1.9075360227976884e-13
ENSDARG00000101482	2.6986616800262944e-13
ENSDARG00000034503	5.567338300152267e-13
ENSDARG00000013670	2.3318547986985375e-11
ENSDARG00000039490	3.047413661053603e-11

Adjusted

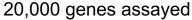
p-value


< 0.05

NSDARG00000100504 8.037125469772779e-7

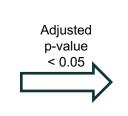
500 significantly DE genes

200 genes annotated to DNA repair

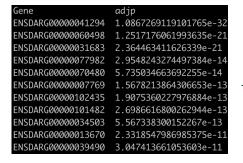

200/500 = **40%**

(300 not annotated to DNA repair)

2000 genes annotated to function (e.g. DNA repair)


2000/20000 = **10%**

(18,000 not annotated to DNA repair)



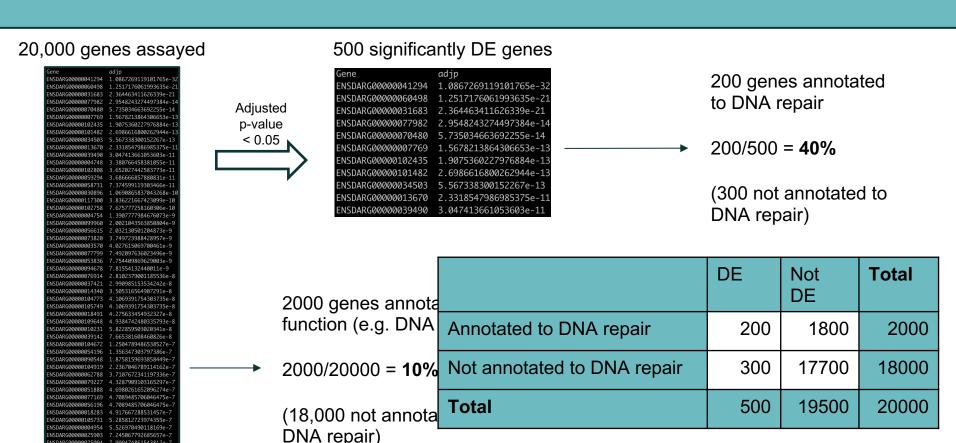
NSDARG00000100504 8.037125469772779e-

500 significantly DE genes

200 genes annotated to DNA repair

200/500 = **40%**

(300 not annotated to DNA repair)


2000 genes annotated to function (e.g. DNA repair)

2000/20000 = **10%**

(18,000 not annotated to DNA repair)

Is seeing 200 DNA repair genes significantly differentially expressed more than we would expect by change?

NSDARG00000100504 8.037125469772779e-

Hypergeometric test

	DE	Not DE	Total
Annotated to DNA repair	200	1800	2000
Not annotated to DNA repair	300	17700	18000
Total	500	19500	20000

Use the hypergeometric test to calculate the probability of having 200 or more DE annotated genes when 2000 of the 20,000 total genes are annotated

$$P(\sigma_t \ge n_t) = \sum_{k=n_t}^{min(m_t,n)} \frac{\binom{m_t}{k}\binom{m-m_t}{n-k}}{\binom{m}{n}}$$

```
> m <- 20000 # Total genes
> n <- 500 # Number of DE genes
> mt <- 2000 # Number of annotated genes
> nt <- 200 # Number of annotated DE genes
> phyper(nt - 1, mt, m - mt, n, lower.tail=FALSE)
[1] 1.65531e-72
```

Multiple testing correction

- In reality, won't just be doing one test
- Want to test all (or a lot) of the GO terms and other functional gene sets
- Leads to problem of multiple testing
- If you test 10,000 GO terms with a significance threshold of < 0.05 then you expect 500 terms to be significant simply by chance
- Need to correct for multiple testing:
 - Bonferroni
 - Benjamini-Hochberg

Bonferroni correction

- Bonferroni is easiest to understand and most conservative
- Simply multiply all p-values by the number of tests (i.e. functional gene sets)
- Get adjusted p-values

Gene	pval	adjp
ENSDARG00000041294	4.904e-37	4.904e-36
ENSDARG00000027744	0.0299254	0.299254
ENSDARG00000100466	0.0412905	0.412905
ENSDARG00000036912	0.0638413	0.638413
ENSDARG00000040553	0.12413	1.00000
ENSDARG00000002016	0.141297	1.00000
ENSDARG00000035256	0.150329	1.00000
ENSDARG00000092381	0.221648	1.00000
ENSDARG00000101125	0.224041	1.00000
ENSDARG000000041223	0.224123	1.00000

Benjamini–Hochberg correction

- Benjamini-Hochberg is less conservative and assumes that all tests are statistically independent
- Not true many functional gene sets overlap:
 - e.g. GO terms are hierarchical so a term's annotations are a subset of their parental annotations
 - e.g. similar pathways can appear in KEGG and WikiPathways
 - o e.g. some genes are co-expressed
- Nevertheless, BH is widely and successfully used
- Although Wijesooriya et al. (2022) found that 43% of papers surveyed failed to do multiple testing correction:

doi.org/10.1371/journal.pcbi.1009935

Background gene set

- Important to choose appropriate background gene set
- Wijesooriya et al. (2022) found that only 4% of papers used an appropriate background (although most failed to specify what background was used): doi.org/10.1371/journal.pcbi.1009935
- Best to choose all genes that could have been captured in your experiment
- Examples:
 - All genes
 - All genes with non-zero total read count in DESeg2
 - All genes that pass DESeq2 independent filtering
 - All genes expressed in a particular tissue
 - All genes with annotations

Other methods

- Functional enrichment analysis (or over-representation analysis) is just one method
- Other methods and tests are available, e.g.
 - GSEA (gene set enrichment analysis)
 - Binomial test
- Concentrating on functional enrichment analysis because most widely used and most tools available

Advantages of functional enrichment analysis

- Improves statistical power as you effectively sum up counts from the multiple genes in a functional gene set
- Improves statistical power as there are usually fewer functional annotations than genes, so less multiple testing correction is needed
- Results are easier to interpret because they are familiar concepts like "DNA repair" rather than obscure gene names
- Diverse data (e.g. RNA-seq, proteomics) can be integrated because they map to common terms/pathways
- Results may be more comparable to related data because results are projected to a smaller set of functional annotations

Disadvantages of functional enrichment analysis

- Terms or pathways with few genes are unlikely to ever be enriched
- Hypergeometric test is more likely to identify larger functional gene sets (e.g. pathways with many genes) as significant
- Genes with multiple functions can lead to enrichment of multiple terms/pathways, some of which aren't relevant
- Databases are (obviously) biased towards genes with annotation so unannotated genes (e.g. many non-coding RNA genes) are invisible to functional enrichment analysis

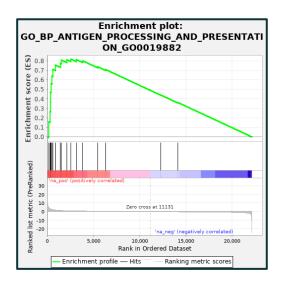
Recommendations based on disadvantages

- For human RNA-seq data, consider excluding functional gene sets with < 10 genes and > 500 genes
- Former are unlikely to ever be significant and latter are too likely to be significant and will often be better represented by other more specific terms/pathways
- Always think about your own experiment:
 - o e.g. is apoptosis enrichment expected or a symptom of a problem during sample preparation

Quiz!

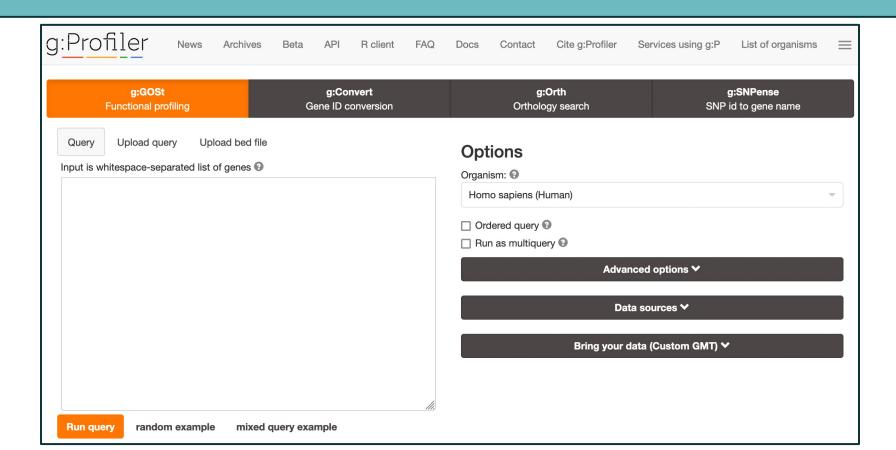
• Quiz on Mentimeter (<u>www.menti.com</u>)

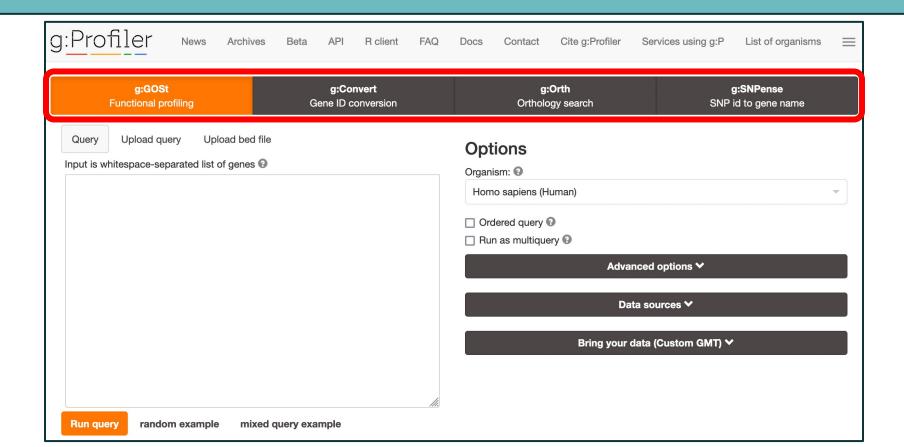
Functional enrichment tools


- Many, many functional enrichment analysis tools exist
- Many are created, published and then never updated
- Best to choose a well used tool
- Using g:Profiler because:
 - Consistently and regularly updated over many years
 - Easy to use
 - o Free
 - Well documented
 - Has advanced features, like simultaneous analysis of multiple lists
 - Has web interface but also an API with supported R and Python packages
 - Covers over 800 species/strains

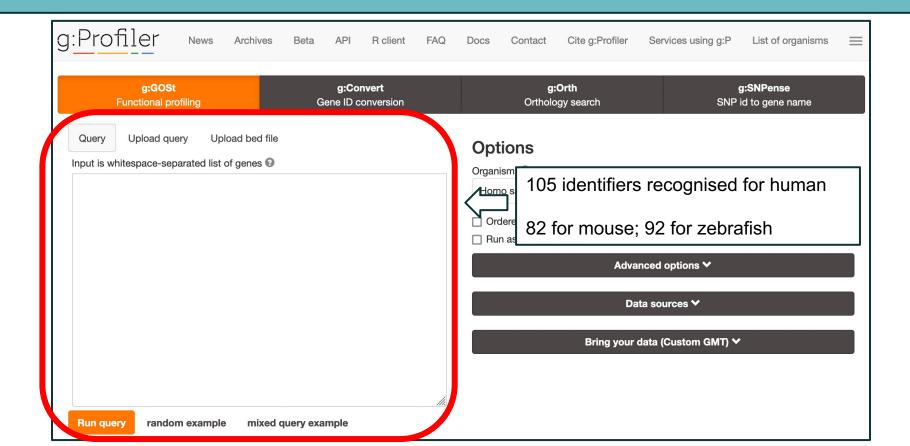
Other functional enrichment tools

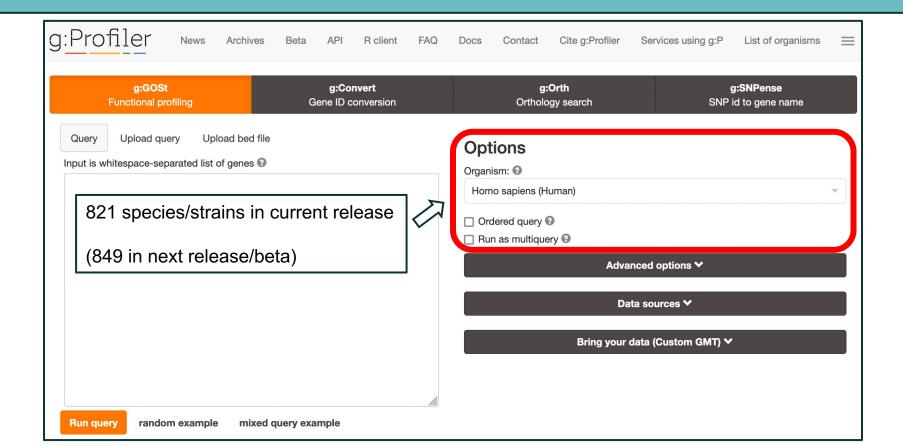
- Other tools are available (and good):
 - Enrichr (<u>maayanlab.cloud/Enrichr/</u>):
 - Web-based
 - Similar to g:Profiler
 - Only human, mouse, fly, yeast, worm and zebrafish
 - GSEA (<u>www.gsea-msigdb.org/gsea/</u>):
 - Desktop software
 - Implements GSEA method
 - Works on whole genome ranked gene lists
 - Looks for gene sets enriched at top or bottom of your ranked list
 - p-values computed by permutating ranked lists

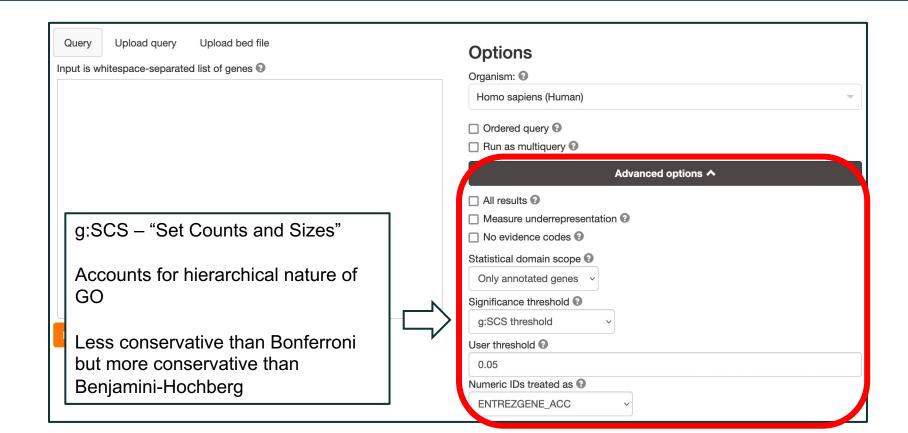


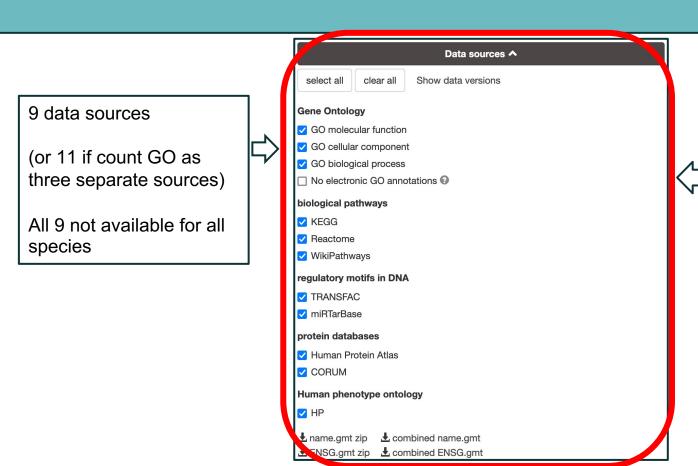

g:Profiler

- g:Profiler uses Ensembl as its primary data source (specifically, BioMart)
- Tracks Ensembl release schedule (every three or four months) but with delay of weeks or months
- g:Profiler beta covering Ensembl 108 (released in October) came out yesterday, but Ensembl 109 came out two weeks ago
- Recommend using Ensembl IDs as input, but not essential


g:Profiler

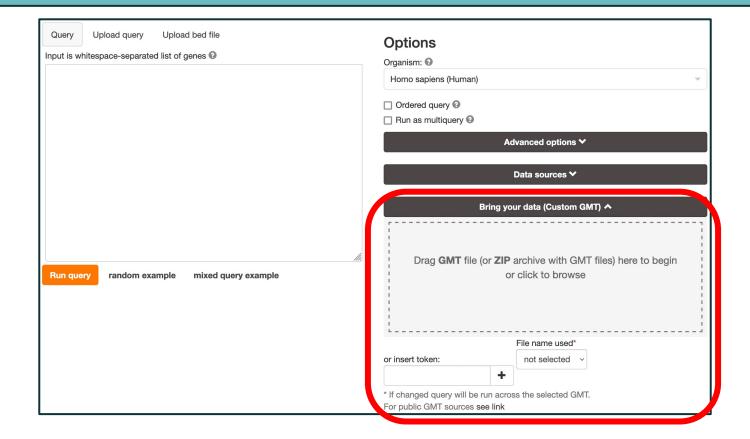

g:Profiler – four tools


g:Profiler – gene list

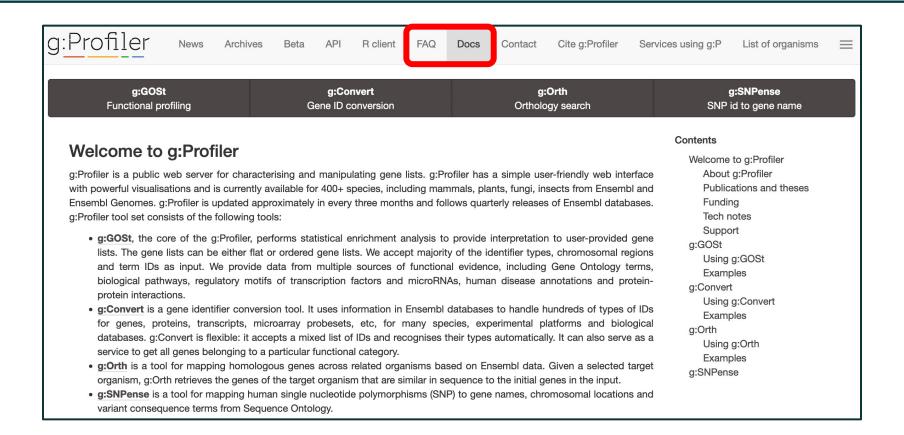

g:Profiler – options

g:Profiler – advanced options

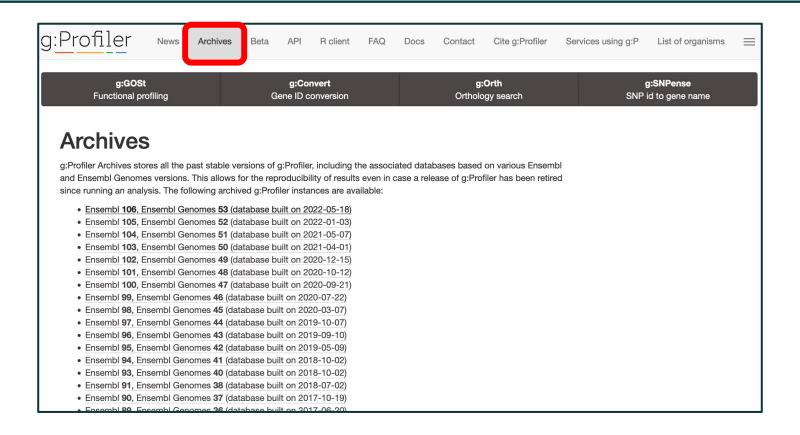
g:Profiler – data sources

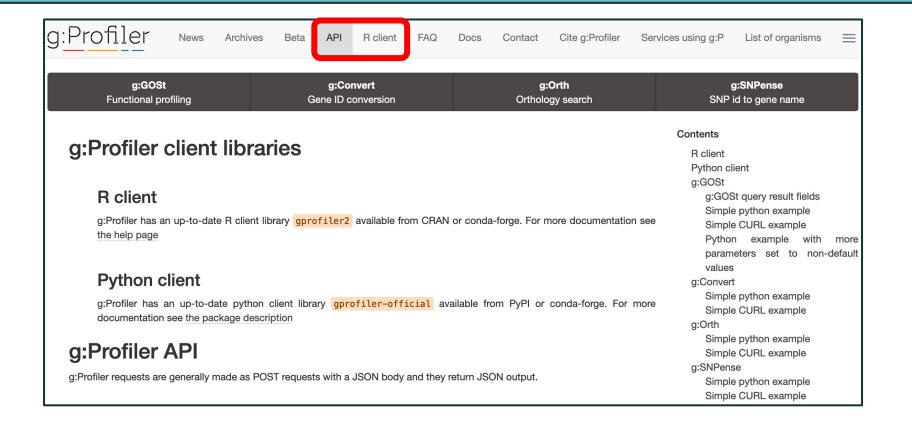


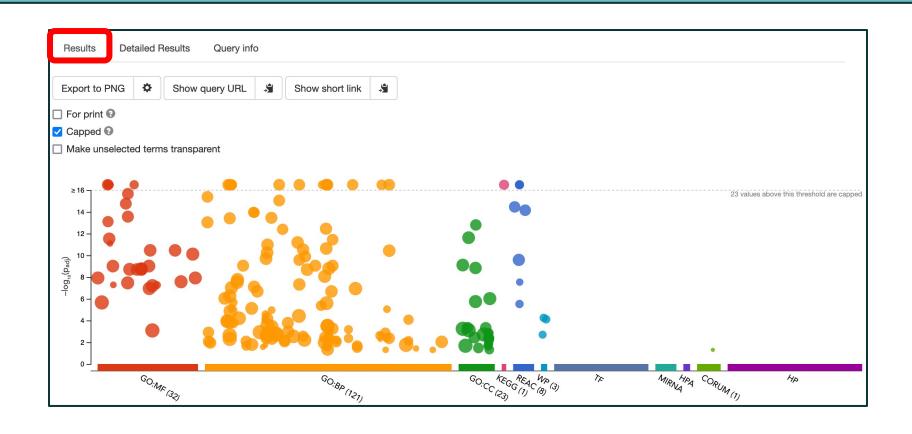
Can exclude GO IEA evidence term (inferred from electronic annotation)

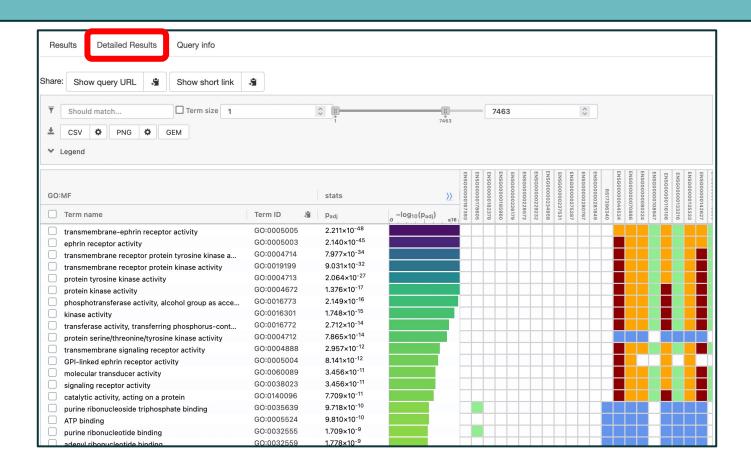

But often as reliable as human annotation (Škunca *et al.* 2012)

Suggest running with and without if using human or model organisms

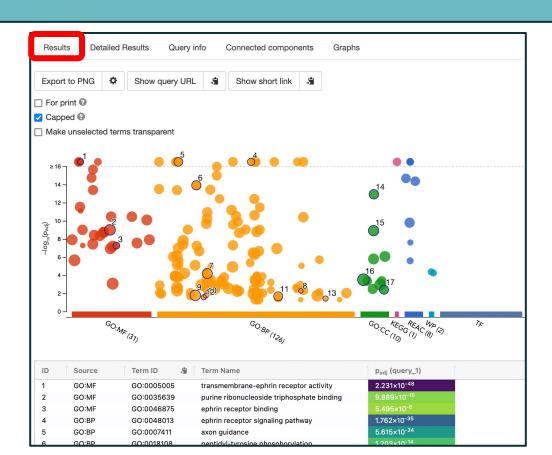

g:Profiler – bring your data


g:Profiler – documentation

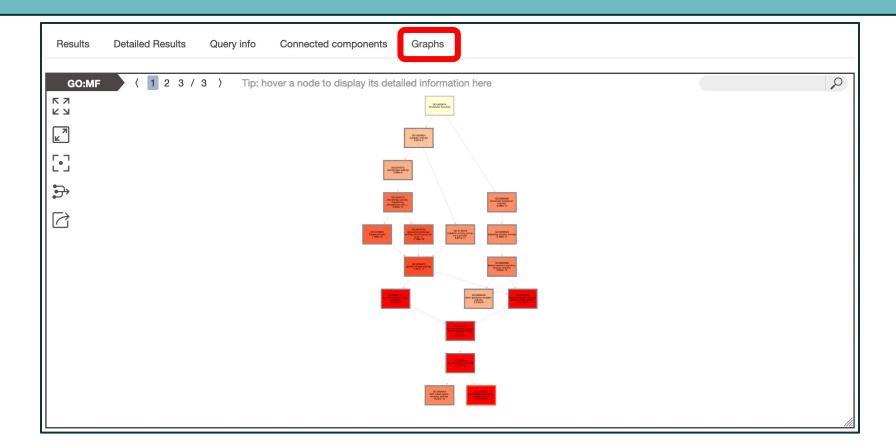

g:Profiler – archives


g:Profiler – API and libraries

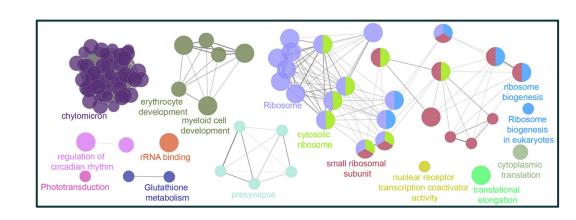
g:Profiler – results


g:Profiler – detailed results

g:Profiler – beta


g:Profiler – beta results

g:Profiler – beta connected components


Results	Detailed Results	Query info Connected components	Graphs	
source	term id	term name	Т	p _{adj} (query_1)
GO:MF	GO:0005005	transmembrane-ephrin receptor activity	16	2.231×10 ⁻⁴⁸
GO:MF	GO:0005003	ephrin receptor activity	19	2.160×10 ⁻⁴⁵
GO:MF	GO:0004714	transmembrane receptor protein tyrosine kinas	63	8.049×10 ⁻³⁴
GO:MF	GO:0019199	transmembrane receptor protein kinase activity	82	9.112×10 ⁻³²
GO:MF	GO:0004713	protein tyrosine kinase activity	147	2.082×10 ⁻²⁷
GO:MF	GO:0004672	protein kinase activity	587	1.427×10 ⁻¹⁷
GO:MF	GO:0016773	phosphotransferase activity, alcohol group as	696	2.168×10 ⁻¹⁶
GO:MF	GO:0016301	kinase activity	795	1.799×10 ⁻¹⁵
GO:MF	GO:0016772	transferase activity, transferring phosphorus-c	967	4.003×10 ⁻¹⁴
GO:MF	GO:0004888	transmembrane signaling receptor activity	1271	2.948×10 ⁻¹²
GO:MF	GO:0005004	GPI-linked ephrin receptor activity	7	8.237×10 ⁻¹²
GO:MF	GO:0060089	molecular transducer activity	1489	3.488×10 ⁻¹¹
GO:MF	GO:0038023	signaling receptor activity	1489	3.488×10 ⁻¹¹
GO:MF	GO:0140096	catalytic activity, acting on a protein	2335	8.072×10 ⁻¹¹
GO:MF	GO:0016740	transferase activity	2340	3.666×10 ⁻⁸
GO:MF	GO:0008046	axon guidance receptor activity	9	5.234×10 ⁻⁸
GO:MF	GO:0003824	catalytic activity	5691	2.251×10 ⁻⁶
source	term id	term name	Т	p _{adj} (query_1)
GO:MF	GO:0035639	purine ribonucleoside triphosphate binding	1848	9.889×10 ⁻¹⁰
GO:MF	GO:0005524	ATP binding	1500	9.902×10 ⁻¹⁰
O:MF	GO:0032555	purine ribonucleotide binding	1917	1.739×10 ⁻⁹
CO:ME	GO:0032559	adenyl ribonycleotide binding	1563	1705~10-9

g:Profiler – beta graphs

Summarising functional enrichment

- Functional enrichment analysis (hopefully) summarises a gene list into something shorter and more comprehensible
- But what if the list of functional enrichments is also long and/or repetitive?
- The connected components functionality is an attempt to solve that problem
- Other methods:
 - Cytoscape / EnrichmentMap
 - Cytoscape / ClueGO

g:Profiler live demo!

biit.cs.ut.ee/gprofiler/

Exercises (plus data and slides)

- Exercises are available from:
 - rnaseq2023.buschlab.org
- Plus data for exercises and these slides
- Everything also available on penelopeprime